Science & Technology

VoxNeuro has established a groundbreaking technological approach that transforms ERPs into reliable and repeatable biomarkers to measure and assess cognitive health.

A Breakthrough for Brain Health

VoxNeuro is revolutionizing the way electroencephalography (EEG) is used in the clinic by pioneering a new system to assess cognitive function based on cognitive event-related potentials (ERPs).

  • EEG-measured ERPs, time-locked to an event or stimulus, are biomarkers of cognitive processes.
  • VoxNeuro delivers on the previously-untapped potential of cognitive ERPs to provide a reliable biomarker of cognitive function.
  • For patients with suspected cognitive impairment, VoxNeuro provides rapid and objective biomarkers to inform clinical decision-making.

VoxNeuro follows a first-of-its-kind, evidence-based EEG protocol. 

  • The assessment takes 30-60 minutes to complete. It is non-invasive, as EEG electrodes sit on the scalp and record the brain’s electrical activity through a conductive gel, similar to an ultrasound.
  • The assessment guides patients through a series of neuropsychological tests on a computer while the EEG records tens of thousands of data-points along their brain waves. 
  • Among those data points are cognitive ERPs. These ERPs are recorded and are instantly analyzed against a normative database to evaluate and score key cognitive functions.

VoxNeuro analyzes cognitive ERPs, including the P300 and N200, that serve as validated biomarkers of the following core cognitive functions:

  • Attention and concentration is assessed through the auditory oddball task and analysis of P300.
  • Information processing is assessed with the auditory oddball task and analysis of N200.
  • Working memory is assessed using the continuous visual memory test (CVMT) and analysis of P300.

Insights Understood by All

VoxNeuro instantly generates clear, clinical reports with universally understood insights.

  • When a patient’s cognitive ERPs are recorded, they are instantly analyzed against a normative database to evaluate and score key cognitive functions. Reports deliver a simple and reliable 0-100 score for each key cognitive function, with 40-60 representing an average healthy score.
  • Scores can be leveraged by healthcare providers to support proactive brain health and make informed clinical decisions.
  • Repeatable tests fill an unmet need of a reliable method to track change over time, including recovery from a traumatic brain injury or the progression of dementia.

Download a sample VoxNeuro report by submitting a request using the form on our Contact page.

Learn about the VoxNeuro advantage

We break down the barriers that hinder today’s cognitive assessments with first-of-its-kind technology.

See the brain like never before

Foundational Research

Watch a summary of the foundational research behind VoxNeuro produced by Scientia:

The written version of the Scientia publication can be read here.

N2b Reflects the Cognitive Changes in Executive Functioning After Concussion: A Scoping Review

Krokhine, S. N., Ewers, N. P., Mangold, K. I., Boshra, R., Lin, C. A., Connolly, J. F (2020)
Frontiers in Human Neuroscience, 14:601370
DOI: 10.3389/fnhum.2020.601370

Neurophysiological markers of cognitive deficits and recovery in concussed adolescents

Ruiter, K. I., Boshra, R., DeMatteo, C., Noseworthy, M., Connolly, J. C. (2020)
Brain Research, 146998
DOI: 10.1016/j.brainres.2020.146998

On the time-course of functional connectivity: theory of a dynamic progression of concussion effects

Boshra, R., Ruiter, K. I., Sonnadara, R., Reilly, J. P., Connolly, J. C. (2020)
Brain Communications, fcaa063
DOI: 10.1093/braincomms/fcaa063

Neurophysiological Correlates of Concussion: Deep Learning for Clinical Assessment

Boshra, R., Ruiter, K. I., DeMatteo, C., Reilly, J. P., Connolly, J. C. (2019)
Nature Scientific Reports, 9 (17341)
DOI: 10.1038/s41598-019-53751-9

From Group-Level Statistics to Single-Subject Prediction: Machine Learning Detection of Concussion in Retired Athletes

Boshra, R., Dhindsa, K., Boursalie, O., Ruiter, K. I., Sonnadara, R., Samavi, R., Doyle, T. E., Reilly, J. P., Connolly, J. F. (2019)
IEEE, 27(7)
DOI: 10.1109/TNSRE.2019.2922553

Disruption of Function: Neurophysiological markers of cognitive deficits in retired football players

Ruiter, K. I., Boshra, R., Doughty, M., Noseworthy, M., Connolly, J. F. (2019)
Clinical Neurophysiology, 130(1): 111-121
DOI: 10.1016/j.clinph.2018.10.013

Global Aphasia: An innovative assessment approach

Connolly, J. F., Mate-Kole, C., Joyce, B. M. (1999)
Archives of Physical Medicine and Rehabilitation, 80(10): 1309-1315
DOI: 10.1016/S0003-9993(99)90035-7

Detection of brain activation in unresponsive patients with acute brain injury.

Claassen, J., Doyle, K., Matory, A., Couch, C., Burger, K. M., Velazquez, A., Okonkwo, J.U., King, J-R., Park, S., Agarwal, S., Roh, D., Megjhani, M., Eliseyev, A., Connolly, E., Rohaut, B. (2019).
The New England Journal of Medicine, 380(26), 2497-2505.


Linking neurophysiological and neuropsychological measures for aphasia assessment

Marchand, Y., D’Arcy, R., Connolly, J. F. (2002)
Clinical Neurophysiology, 113(11)
DOI: 10.1016/S1388-2457(02)00224-9

Development of a point of care system for automated coma prognosis: a prospective cohort study protocol

Connolly, J. F., Reilly, J. P., Fox-Robichaud, A., Britz, P., Blain-Moraes, S., Sonnadara, R., Hamielec,  C., Herrera-Diaz, A., Boshra, R. (2019)
BMJ Open, 9(7)
DOI: 10.1136/bmjopen-2019-029621

Automatic and continuous assessment of ERPs for mismatch negativity detection

Armanfard, N., Kameili, M., Reilly, J. P., Mah, R., Connolly, J. F. (2016)
DOI: 10.1109/EMBC.2016.7590863

Automatic and continuous assessment of ERPs for mismatch negativity detection

Blain-Moraes, S., Boshra, R., Kan Ma, H., Mah, R., Ruiter, K. I., Avidan, M., Connolly, J. F., Mashour, G. A. (2016)
Frontiers in Human Neuroscience
DOI: 10.1109/EMBC.2016.7590863

Assessment of children’s receptive vocabulary using event related potentials; Development of clinically validated test

Byrne, J. M., Dywan, C. A., Connolly, J. F. (1995).
Child Neuropsychology, 1(3): 211-223
DOI: 10.1080/09297049508400226

Assessing adult receptive vocabulary with event related potentials: An investigation of cross-modal and cross-form priming

Connolly, J. F., Byrne, J. M., Dywan, C. A. (1995)
Journal of Clinical and Experimental Neuropsychology, 17(4)
DOI: 10.1080/01688639508405145

An innovative method to assess the receptive vocabulary of children with cerebral palsy using event-related potentials

Byrne, J. M., Dywan, C. A., Connolly, J. F. (1995)
Journal of Clinical and Experimental Neuropsychology, 17(1): 9-19
DOI: 10.1080/13803399508406576

Brain activity and language assessment using event-related potentials: development of a clinical protocol

Byrne, J. M., Connolly, J. F., MacLean, S. E., Dooley, J. M., Gordon, K. E., Beattie, T. L. (1999)
Developmental Medicine & Clinical Neurology, 41(11)
DOI: 10.1111/j.1469-8749.1999.tb00534

Brain Activity and Cognitive Status in Pediatric Patients: Development of a Clinical Assessment Protocol

Byrne, J. M., Connolly, J. F., MacLean, S. E., Beattie, T. L., Dooley, J. M., Gordon, K. E. (2001)
Journal of Child Neurology, 16(5): 325-332
DOI: 10.1177/088307380101600504

Electrophysiological evidence for the integral nature of tone in Mandarin spoken word recognition

Ho, A., Boshra, R., Schmidtke, D., Oralova, G., Moro, A. L., Service, E., Connolly, J. F. (2019)
Neuropsychologia, 131: 325-332
DOI: 10.1016/j.neuropsychologia.2019.05.031

Supporting Literature

1. Byrne, J.M., Connolly, J.F., McLean, S.E., Beattie, T.L., Dooley, J.M., & Gordon, K.E. (2001). Brain activity and cognitive status in pediatric patients: Development of a clinical assessment protocol. Journal of Child Neurology, 16, 325-332. DOI: 10.1177/088307380101600504

2. Connolly, J.F., D’Arcy, R.C.N., Newman, R.L., & Kemps, R. (2000). The application of cognitive event-related brain potentials (ERPs) in language- impaired individuals: Review and case studies (Invited Review: Ed. Dr. J. Polich). International Journal of Psychophysiology, 38, 55-70.

3. Connolly, J.F. & D’Arcy, R.C.N. (2000). Innovations in neuropsychological assessment using event-related brain potentials (Invited Review). International Journal of Psychophysiology, 37, 31-47. DOI: 10.1016/S0167-8760(00)00093-3

4. D’Arcy, R.C.N. & Connolly, J.F. (1999). An event-related brain potential study of receptive speech comprehension using a modified Token Test. Neuropsychologia, 37, 1477-1489. DOI: 0.1016/S0028-3932(99)00057-3

5. D’Arcy, R.C.N., Connolly, J.F., & Eskes, G. A. (2000). Evaluation of reading comprehension with neuropsychological and event-related brain potential (ERP) methods. Journal of the International Neuropsychological Society, 6, 556-567. LINK:

6. Duncan CC, Barry RJ, Connolly JF, et al. Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin Neurophysiol. 2009;120(11):1883–1908.
DOI: 10.1016/j.clinph.2009.07.045

7. Frishkoff, G., Sydes, J., Mueller, K., Frank, R., Curran, T., Connolly, J., Kilborn, K., Molfese, D., Perfetti, C., & Malony, A. (2011). Minimal Information for Neural Electromagnetic Ontologies (MINEMO): A standards- compliant method for analysis and integration of event-related potentials (ERP) data. Standards in Genomic Sciences, 5(2): 211–223. DOI: 10.4056/sigs.2025347

8. Folstein JR, Van Petten C. Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology. 2008;45(1):152–170.

9. Harker, K.T. & Connolly, J.F. (2007). Assessment of visual working memory using event-related potentials. Clinical Neurophysiology, 118, 2479–2488.
DOI: 10.1016/j.clinph.2007.07.026

10. Heil M, Osman A, Wiegelmann J, Rolke B, Hennighausen E. N200 in the Eriksen-task: Inhibitory executive process? J Psychophysiol. 2000;14(4):218–218.

11. Kok A. On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology. 2001;38(3):557–577.

12. Kutas M, McCarthy G, Donchin E. Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. Science. 1977;197(4305):792–795.

13. Lefebvre, C.D., Marchand, Y., Eskes, G.A., & Connolly, J.F. (2005). Assessment of working memory abilities using an event-related brain potential (ERP)-compatible digit span backward task. Clinical Neurophysiology, 116, 1665-1680.
DOI: 10.1016/j.clinph.2005.03.015

14. Light GA, Swerdlow NR, Braff DL. Preattentive sensory processing as indexed by the MMN and P3a brain responses is associated with cognitive and psychosocial functioning in healthy adults. J Cogn Neurosci. 2007;19(10):1624–1632.

15. Lim CL, Gordon E, Rennie C, et al. Dynamics of SCR, EEG, and ERP activity in an oddball paradigm with short interstimulus intervals. Psychophysiology. 1999;36(5):543–551.

16. Marchand, Y., Lefebvre, C., & Connolly, J.F. (2006). Correlating digit span performance and event-related potentials to assess working memory. International Journal of Psychophysiology, 62, 280-289. DOI: 10.1016/j.ijpsycho.2006.05.007

17. Näätänen R, Gaillard AWK. 5 The orienting reflex and the N2 deflection of the event-related potential (ERP). 1983 Epub.

18. Näätänen R, Gaillard AWK, Mäntysalo S. Early selective-attention effect on evoked potential reinterpreted. Acta Psychol (Amst). 1978;42(4):313–329.

19. Näätänen R, Paavilainen P, Rinne T, Alho K. The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clinical Neurophysiology.

20. Näätänen R, Picton T. The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology. 1987;24(4):375–425.

21. Patel SH, Azzam PN. Characterization of N200 and P300: selected studies of the event-related potential.
Int J Med Sci. 2005;2(4):147–147.

22. Polich J. Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol.

23. Polich J. Task difficulty, probability, and inter-stimulus interval as determinants of P300 from auditory stimuli.
Electroencephalogr Clin Neurophysiol Potentials Sect.

24. Polich J. Normal variation of P300 from auditory stimuli. Electroencephalogr Clin Neurophysiol Potentials Sect.

25. Polich, J. (1998). P300 clinical utility and control of variability.
Journal of Clinical Neurophysiology, 15(1), 14-33.

26. Polich J, Howard L, Starr A. P300 latency correlates with digit span.Psychophysiology. 1983;20(6):665–669.26. Reinvang, I. (1999). Cognitive event-related potentials in neuropsychological assessment. Neuropsychol. Rev. 9, 231–248.

27. Reinvang, I. (1999). Cognitive event-related potentials in neuropsychological assessment. Neuropsychol. Rev. 9, 231–248.

1. Baillargeon A, Lassonde M, Leclerc S, Ellemberg D. Neuropsychological and neurophysiological assessment of sport concussion in children, adolescents and adults.
Brain Inj. 2012;26(3):211–220.

2. Broglio SP, Moore RD, Hillman CH. A history of sport-related concussion on event-related brain potential correlates of cognition.
Int J Psychophysiol. 2011;82(1):16–23.

3. Broglio SP, Pontifex MB, O’Connor P, Hillman CH. The persistent effects of concussion on neuroelectric indices of attention.
J Neurotrauma. 2009;26(9):1463–1470.

4. De Beaumont L, Lassonde M, Leclerc S, Théoret H. Long-term and cumulative effects of sports concussion on motor cortex inhibition.
Neurosurgery. 2007;61(2):329–337.

5. De Beaumont L, Theoret H, Mongeon D, et al. Brain function decline in healthy retired athletes who sustained their last sports concussion in early adulthood.
Brain. 2009;132(3):695–708.

6. De Beaumont L, Beauchemin M, Beaulieu C, Jolicoeur P. Long-term attenuated electrophysiological response to errors following multiple sports concussions.
Journal of clinical and experimental neuropsychology. 2013 Jul 1;35(6):596-607.

7. Dupuis F, Johnston KM, Lavoie M, Lepore F, Lassonde M. Concussions in athletes produce brain dysfunction as revealed by event-related potentials.
Neuroreport. 2000;11(18):4087–4092.

8. Ellemberg D, Henry LC, Macciocchi SN, Guskiewicz KM, Broglio SP. Advances in sport concussion assessment: from behavioral to brain imaging measures.
Journal of neurotrauma. 2009 Dec 1;26(12):2365-82.

9. Gaetz M, Goodman D, Weinberg H. Electrophysiological evidence for the cumulative effects of concussion.
Brain Inj. 2000;14(12):1077–1088.

10. Gawryluk, J.R., D’Arcy, R.C.N., Connolly, J.F., & Weaver, D.F. (2010). Improving the clinical assessment of consciousness with advances in electrophysiological and neuroimaging techniques.
BMC Neurology, 10:11. DOI: 10.1186/1471-2377-10-11

11. Gosselin N, Bottari C, Chen J-K, et al. Evaluating the cognitive consequences of mild traumatic brain injury and concussion by using electrophysiology.
Neurosurg Focus. 2012;33(6):E7–E7.Johnston KM. New investigative tools in concussion. British Journal of Sports Medicine. 2001 Oct 1;35(5):371-.

12. Johnston KM. New investigative tools in concussion.
British Journal of Sports Medicine. 2001 Oct 1;35(5):371-.

13. Harrison, A. & Connolly, J.F. (2013). Finding a way in: a review and practical evaluation of fMRI and EEG in disorders of consciousness.
Neuroscience and Biobehavioral Reviews, 37(8):1403-1419. DOI: 10.1016/j.neubiorev.2013.05.004.

14. Henry LC, Tremblay S, De Beaumont L. Long-term effects of sports concussions: bridging the neurocognitive repercussions of the injury with the newest neuroimaging data.
The Neuroscientist. 2017 Oct;23(5):567-78.

15. Hudac CM, Cortesa CS, Ledwidge PS, Molfese DL. History of concussion impacts electrophysiological correlates of working memory.
International journal of psychophysiology. 2017 Oct 10.

16. Ledwidge PS, Molfese DL. Long-term effects of concussion on electrophysiological indices of attention in varsity college athletes: An event-related potential and standardized low-resolution brain electromagnetic tomography approach.
Journal of neurotrauma. 2016 Dec 1;33(23):2081-90.

17. Lovell, M. R., Collins, M. W., Iverson, G. L., Field, M., Maroon, J. C., Cantu, R., … & Fu, F. H. (2003). Recovery from mild concussion in high school athletes.
Journal of neurosurgery98(2), 296-301.

18. Mizrahi, E. M., & Kellaway, P. (1984). Cerebral concussion in children: assessment of injury by electroencephalography.
Pediatrics73(4), 419-425.

19. Pratap‐Chand, R., Sinniah, M., & Salem, F. A. (1988). Cognitive evoked potential (P300): a metric for cerebral concussion.
Acta Neurologica Scandinavica78(3), 185-189.

20. Moore DR, Pindus DM, Raine LB, Drollette ES, Scudder MR, Ellemberg D, Hillman CH. The persistent influence of concussion on attention, executive control and neuroelectric function in preadolescent children.
International Journal of Psychophysiology. 2016 Jan 1;99:85-95.

21. Ozen, L. J., Itier, R. J., Preston, F. F., & Fernandes, M. A. (2013). Long-term working memory deficits after concussion: electrophysiological evidence.
Brain injury27(11), 1244-1255.22.

22. Thériault M, De Beaumont L, Tremblay S, Lassonde M, Jolicoeur P. Cumulative effects of concussions in athletes revealed by electrophysiological abnormalities on visual working memory.
Journal of clinical and experimental neuropsychology. 2011 Jan 5;33(1):30-41.

1. ArmanFard, N., Komeili, M., Reilly, J. & Connolly, J. (2018). A machine learning framework for automatic and continuous MMN detection with preliminary results for coma outcome prediction. IEEE Journal of Biomedical and Health Informatics [Epud ahead of print].
DOI: 10.1109/JBHI.2018.2877738.

2. Blain-Moraes, S., Boshra, R., Ma, H.K., Mah, R., Ruiter, K., Avidan, M., Connolly, J.F. and Mashour, G.A. (2016). Normal brain response to propofol in advance of recovery from unresponsive wakefulness syndrome. Frontiers in Human Neuroscience. 2016 June 2; 10:248.
DOI: 10.3389/fnhum.2016.00248

3. Claassen, J., Doyle, K., Matory, A., Couch, C., Burger, K. M., Velazquez, A., Okonkwo, J. U., King, J-R., Park, S., Agarwal, S., Roh, D., Megjhani, M., Eliseyev, A., Connolly, E., Rohaut, B. (2019). Detection of brain activation in unresponsive patients with acute brain injury.
The New England Journal of Medicine, 380(26), 2497-2505. DOI: 10.1056/NEJMoa1812757

4. Connolly, J.F., Mate-Kole, C.C., & Joyce, B.M. (1999). Global aphasia: An innovative assessment approach.
Archives of Physical Medicine and Rehabilitation, 80, 1309-1315. LINK:

5. Connolly, J.F., Major, A., Allen, S., & D’Arcy, R.C.N. (1999). Performance on WISC-III and WAIS-R NI vocabulary subtests assessed with event-related brain potentials: An innovative method of assessment.
Journal of Clinical and Experimental Neuropsychology, 21, 444-464. DOI: 10.1076/jcen.21.4.444.879

6. Connolly, J.F, Marchand, Y., Major, A., & D’Arcy, R.C.N. (2006). Event- related brain potentials as a measure of performance on WISC-III and WAIS- R NI Similarities sub-tests.
Journal of Clinical & Experimental Neuropsychology, 28, 1327-1345. DOI: 10.1080/13803390500428484

7. Fischer C, Luaute J, Morlet D. Event-related potentials (MMN and novelty P3) in permanent vegetative or minimally conscious states.
Clin Neurophysiol. 2010;121(7):1032–1042.

8. Mah, R., & Connolly, J. (2018). A framework for the extended monitoring of levels of cognitive function in unresponsive patients. PLoS ONE, 13(7): e0200793.
DOI: 10.1371/journal.pone.0200793

9. Morlet D, Fischer C. MMN and novelty P3 in coma and other altered states of consciousness: a review.
Brain Topogr. 2014;27(4):467–479

10. Wang, J.T., Young, G.B., & Connolly, J.F. (2004). Prognostic value of evoked responses and event-related brain potentials in coma.
Canadian Journal of Neurological Sciences, 31, 438- 450. DOI: 10.1017/S0317167100003619

11. Young, G.B., Wang, J.T., & Connolly, J.F. (2004). Prognostic determination in anoxic-ischemic and traumatic encephalopathies.
Journal of Clinical Neurophysiology, 21, 379-390. Link:

1. D’Arcy, R.C.N., Marchand, Y., Eskes, G.A., Harrison, E.R., Phillips, S. J., Major, A., & Connolly, J.F. (2003).
Electrophysiological assessment of language function following stroke. Clinical Neurophysiology, 114, 662-672. DOI: 10.1016/S1388-2457(03)00007-5

1. Dick, B.D., Connolly, J.F., McGrath, P.J., Finley, G.A., Stroink, G., Houlihan, M.E., & Clark, A.J. (2003). The disruptive effect of chronic pain on mismatch negativity.
Clinical Neurophysiology, 114, 1497-1506. DOI: 10.1016/S1388-2457(03)00133-0

2. Dick, B.D., Connolly, J.F., Houlihan, M.E., McGrath, P.J., Finley, G.A., Stroink, G., & Clark, A. J. (2006). Effects of experimental pain on Mismatch Negativity.
Journal of Psychophysiology, 20(1), 21-31. DOI: 10.1027/0269-8803.20.1.21

3. Houlihan, M.E., McGrath, P.J., Connolly, J.F., Stroink, G., Finley G.A., Dick, B., & Phi, T.T. (2004). Assessing the effect of pain on demands for attentional resources using ERPs.
International Journal of Psychophysiology, 51, 181-187. DOI: 10.1016/j.ijpsycho.2003.08.001

4. Troche, S.J., Houlihan, M.E., Connolly, J.F., Dick, B.D., McGrath, P.J., Finley, G.A. and Stroink, G. (2014). The effect of pain on involuntary and voluntary capture of attention.
European Journal of Pain, Article first published online: 23 JUL 2014 | DOI: 10.1002/ejp.553